scorecardresearch
Tuesday, March 26, 2024
Support Our Journalism
HomeScienceThis is how Indian astronauts will be trained for Gaganyaan in Russia

This is how Indian astronauts will be trained for Gaganyaan in Russia

ISRO’s proposed Gaganyaan mission will be India’s first crewed spaceflight, made using indigenous technologies. It is scheduled for December 2021.

Follow Us :
Text Size:

Bengaluru: Preparations are on for India’s Yuri Gagarin moment, with astronauts undergoing training in Russia for ISRO’s indigenous Gaganyaan mission set for December 2021.

ISRO is gearing up for the first full test flight of Gaganyaan in December 2020, without any crew. Another test flight is expected to follow in July 2021. If all goes well, India will launch its first astronauts into space in December 2021. They will orbit the Earth for seven days, carry out experiments and then come back.

A successful execution of the Gaganyaan mission will open up doors to more complex human spaceflight missions, including building a space station around Earth by 2030.

The Indian Air Force had shortlisted 10 test pilots to train at Glavkosmos, a subsidiary of the Russian Space Agency, while an ISRO Technical Liaison Unit is to be set up in Moscow to facilitate the development of key technologies essential to life support systems. This cooperative operation will help ISRO build the required infrastructure in India in the coming years, but for now, here’s what it entails.

At the end of training, three astronauts will be selected for the Gaganyaan flight. It is unlikely that any of them would be women, considering that the Indian armed forces don’t have women in the desired posts.

Spacesuits will be made by DEBEL, an Indian defence laboratory under the DRDO, located in Bengaluru.


Also read: NATO likely to declare space a war zone. This is how it could pan out


Astronaut training

The initial training for the Gaganyaan crew involves undergoing medical examination and physical training. Even fit military personnel undergo rigorous training to adapt to physiological changes brought on by changing gravity environments.

During human spaceflight, astronauts experience gravitational loads ranging from 1g on Earth to much higher forces during rocket flight and re-entry, and 1g again post-landing.

Many astronauts experience motion sickness upon entering weightlessness, impacting nominal mission operations schedule. The changing gravity environments also result in ineffective blood circulation, especially upon Earth re-entry and landing, where blood flow changes incapacitate the crew members or knock them unconscious due to lack of internal pressure.

While seven days of orbital flight is not enough time for major physiological changes like bone weakness or muscle loss to occur, adapting to changing gravitational acceleration loads during the mission requires training in a centrifuge that simulates g forces by spinning rapidly.

Centrifuge at the Yuri Gagarin Cosmonaut Training Center in Russia, capable of delivering loads up to 31g
Centrifuge at the Yuri Gagarin Cosmonaut Training Center in Russia, capable of delivering loads up to 31g | Photo: Harald Illig

Astronauts will also be familiarised with all engineering aspects of the spacecraft, notably life support systems, navigation and thermal control, along with astronomy, orbital mechanics and Earth observation. This is necessary in cases where manual intervention is required, like turning on heaters to maintain oxygen pressure or executing a spacecraft manoeuvre. They’ll also be trained in astronomy, orbital mechanics and earth observation, which prove most useful in case of emergencies. Remember how Apollo 13 astronauts identified stars for navigation and a safe return to Earth?

Astronaut training typically lasts four years, but for Indian astronauts, it will be completed in two years to meet the launch deadline. This means excluding training for spacewalks or rendezvous and docking, etc, as these won’t be performed. The Gaganyaan mission is primarily a technology demonstrator, and subsequent missions are expected to be more complex.


Also read: India must boost start-ups to catch up with China’s private space firms


Potential scientific experiments

The crew will be trained to carry out scientific experiments, the details of which ISRO is yet to reveal. But it invited proposals late last year for microgravity experiments and has narrowed down the categories to 10 payload types that could be placed both inside and outside the crew module.

It is likely that the crew would take up some form of life (bacteria, microorganisms, plants), to study the effect of spaceflight on them and understand how some microbes photosynthesise or reproduce in radiation-prone environments.

There would be medical experiments, like dealing with human waste management in space. Given the brief mission period, experiments exploring cardiovascular changes are expected, in ways similar to parabolic flight studies conducted on Earth.

Insulin crystals grown in space (left) are larger and better ordered than those grown on Earth (right)
Insulin crystals grown in space (left) are larger and better ordered than those grown on Earth | Photo: NASA

There would also be payloads for environmental monitoring and novel communication methods, as mentioned by the call for proposals.

Microgravity allows for the formation of defect-free crystals, unlike those on Earth where gravity introduces asymmetry. Better crystal growth allows for making better medicines, and related experiments could be present.

Flames are spherical in microgravity and understanding them helps build more efficient engines on Earth. Experiments dealing with them as well as fluids might also be included.

A flame is spherical in microgravity
A comparison between a flame on Earth and a spherical flame in microgravity | Photo: NASA

Also read: A historic all-women spacewalk outside International Space Station, finally


Spacecraft development and testing

ISRO’s human spaceflight programme was green-lighted in 2018 after years of roadblocks and delayed funding. The government approved in December 2018 Rs 10,000 crore for a debut flight, and a Human Space Flight Centre was set up a month later in Bengaluru.

Even before the final approval, ISRO had been inching towards the technology stack required to pull off such a massive feat.

In 2007, ISRO launched a down-scaled version of a human spacecraft design to Low Earth Orbit. Called the Space Capsule Recovery Experiment, it tested major human spaceflight technologies — like spacecraft navigation and control, re-entry into the Earth’s atmosphere, thermal management, communication blackout during the re-entry, deployment of parachutes, and a successful craft recovery after it splashed down in the Bay of Bengal.

A similar test was conducted successfully in 2014 with a full-blown prototype, called the Crew Module Atmospheric Re-entry Experiment (CARE).

The Indian Coast Guard recovering the CARE module.
The Indian Coast Guard recovering the CARE module. | Photo: Indian Coast Guard

In July 2018, during a spaceflight emergency test, ISRO ejected a dummy craft off the rocket on the launch pad after which the system quickly steered the craft autonomously farther away from the pad before it parachuted down in the Bay of Bengal.

Dummy Gaganyaan crew module ejection
Dummy Gaganyaan crew module ejection | ISRO
Dummy Gaganyaan crew module descends under parachutes, after Pad Abort Test conducted on 5 July 2018
Dummy Gaganyaan crew module descends under parachutes, after Pad Abort Test conducted on 5 July 2018 | Photo: ISRO

The launch vehicle of choice is the GSLV Mk-III, which made its first operational flight with Chandrayaan-2 in July, closing a long series of events right from the 2010 failure that held back India’s most powerful rocket.

Nicknamed the ‘Fat Boy’, it will carry the 7,800 kg Gaganyaan craft holding three astronauts, orbiting for seven days. It is to be placed in a Low Earth Orbit at about 400km. ISRO’s trusty PSLV can put a maximum of 3,800 kg to LEO, but the GSLV Mk-III can place up to 10,000 kg in the same orbit.


Also read: Space Activities Bill, meant to boost private role, will create confusion instead


Jatan Mehta is a science writer and former science officer at TeamIndus Moon Mission. He has research experience in astrophysics and is passionate about space advocacy, science communication and open source. His portfolio can be found at jatan.space and Twitter profile is @uncertainquark.

Subscribe to our channels on YouTube, Telegram & WhatsApp

Support Our Journalism

India needs fair, non-hyphenated and questioning journalism, packed with on-ground reporting. ThePrint – with exceptional reporters, columnists and editors – is doing just that.

Sustaining this needs support from wonderful readers like you.

Whether you live in India or overseas, you can take a paid subscription by clicking here.

Support Our Journalism

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular